Solar Proposal

by Ben N on February 27, 2017

This past week, I turned in my proposal for my solar electric system to the local power utility. Here’s the equipment I’ll be using and why. Please keep in mind that there’s more than one way to design a solar electric system. What is right for me may not be right for you, but I hope that explaining it gives you some greater insight on designing YOUR system!

In a Nutshell:
The solar system will be 24 solar panels, each with a micro-inverter on it. Those will connect to a combiner/disconnect box on the exterior of the garage. From there the power will feed in to the garage and connect to the main breaker through a 30A fuse. The garage panel is connected by buried cables to the house and from there, out to the electric grid.

Solar Panels:
The solar panels are Helios brand, 60 cell panels rated at 260 watts. The panels were made in Milwaukee, Wisconsin, 30-35 miles from my house. That’s right, buy local!

Micro-Inverters:
Enphase M250. Micro-inverters simplify wiring. There’s no need for a DC disconnect. The inverters mount to the racking under the solar panels. They then plug in to a quick-connect “trunk cable”. All power is 240V AC, which is what regular residential electricians are used to. Wire lengths and gauges are all standard at that point. Also, the micro-inverters are isolated from the DC power and the EGC grounding is done through the trunk cable. That means that I won’t have to install a thick bare copper wire between the inverters, panels, and racking. That saves costs and labor on the installation. (For details on grounding this system, please see Enphases technical paper on the subject at LINK.)

IMG_3221Racking:
Iron Ridge XR-100 racking. This racking looks nice. Iron Ridge has a great wizard on their web page for calculating snow loads, wind loads, total weight of system, etc. That’s great information to have to show the building inspector and power utility. It shows that I know that the roof won’t collapse from too much weight, nor will the solar panels come off in a wind-storm and damage my neighbor’s property. The Iron Ridge system also uses fasteners designed to electrically BOND the solar panel frames, the equipment rack, and the micro-inverters. Using this racking with the Enphase system together bonds everything and provides all grounding necessary through the Enphase trunk cable.

IMG_3039Roof Clamps:
To connect the Iron Ridge Racking to the roof, I’ll use S-5! brand clamps. The “Mini” are still very powerful and completely appropriate for solar applications. I did a test set-up of a sample piece of my roofing with an S-5! clamp on it. The holding power is pretty amazing! It’s all done by just the shape of the clamp pinching on to the roofing with a set-screw. No holes are made in the roofing. It’s a great way to provide a solid connection to the roof with no risk of leaks. I’ll be using the “N” style to match my roofing profile.

AC Combiner/Disconnect:
Because 24 micro-inverters is too many to have on a single 20-amp circuit, I’ll need TWO circuits to handle the power. That also means that I need a way to combine both circuits. That could be done with something as simple as a breaker sub panel on the outside of the building. I also need a dedicated AC Disconnect with a red handle that can be locked in the off position. That’s both common sense and required by the power utility. To do BOTH at the same time, I’ve ordered a MidNite Solar MNPV-6 Disco Micro AC Combiner/Disconnect. In a single box, it provides up to three circuit breakers for combining the roof-top power. On the cover of the box is a red lever, which physically flips the breakers to OFF, and can be locked in place.

Single Line Diagram_NelsonPower Utility Requirements:
I had to turn in paperwork to the power utility. The main form was the PSC 6027 – “Standard Distributed Generation Application Form”. That includes the basics, such as customer name and address, up to a very complete listing of the equipment to be used and how it will all be connected. It also requires a Single-Line Electrical Diagram and a Site Map. I generated the Single-Line Diagram by using the trial version of the software at http://get.solardesigntool.com The software acts as a wizard – you just enter what equipment you will use and a little other information, and it will generate a very professional looking electrical diagram. The only problem I had with it was that the MidNite Solar disconnect was not listed in their database of disconnects. So, I ended up editing the exported diagram in Photoshop to correct for it. Still, a pretty good deal for some free software!

Site Plan_private

For the Site Map, I made a new document in Photoshop, keeping the fancy looking edging from my generated Single-Line Diagram. I put in an aerial view of my property, cut and pasted from Google Maps. I also traced an old copy of a property line map that I had, making clean new lines for the house and garage, and then labeled them where the existing utility meter is and where the disconnect box will go.

I turned in the PSC 6027, The Single-Line, and Site Map, and PDF spec sheets of all the equipment I would use to the power utility. At this point, I’m just waiting to hear back from them, hopefully with approval and no changes needing to be done to the proposal.

Incentives:
At this point, the U.S. Federal government offers a nice 30% tax credit for installed renewable energy systems. It’s just a one-page form filled out when you do your taxes. It’s a great way for the government to encourage installation of renewable energy.

Unfortunately, the State of Wisconsin has NO incentives. Fortunately, there IS an incentive through the power utilities through a program called Focus on Energy. This program is funded by a mandate on utility company profits to be directed towards energy conservation and renewable energy. In my area, people are most familiar with it for discounts on energy-efficient light bulbs at the home improvement store. Last year, the Focus on Energy incentive for solar was a set rate  per kilowatt, maxing out at $2,400 – and my installation would max out that number. This year, the incentive is instead changed to a COST of installing the solar. The incentive is 12%. In my case, the solar should cost about $10,000, so the rebate would be only $1,200 – HALF of what I could have earned last year. Even worse than that, it seems likely that there will be NO money next year for installing solar through this program. Still, the cost of solar has dropped dramatically over recent years, and I hope people keep installing even more, not matter what the state of local incentives is.

Economic Return on Investment:
Adding up the cost of all the system components, I expect my system to cost nearly $10,000. I’ll earn 30% back on my taxes ($3,000) and up to $1,200 on the local incentive, which should bring my total out of pocket cost down to just under $6,000. Also, it’s a 6kW system, so when I’m done, I’ll have built a solar system for about a dollar per watt (after incentives.) The PVWatts and other predictions that I’ve run show that I should produce electricity to save right around $1,000 per year. So, after 6 years the system will have paid for itself.

I’ve also run numbers on creating my own electricity and using it to run an electric car. Just using averaged numbers for fuel economy and cost, this could bring the return on investment down to as little as 3.5 years! I can’t think of any other investment that can double my money in that little time! The other thing to keep in mind is that it’s a SURE THING. I KNOW what my electric costs will be (capitol investment divided over time…) whereas I DON’T know what the cost of gasoline, natural gas, and other fossil fuels will be OR if my power company DID want to hike the cost of electricity.

That’s it for now! I’m waiting to hear back from the power utility. I hope this overview of the solar system helps you learn a little bit more about solar and maybe help you to install your own!

Until next time, stay charged up!

-Ben

EDIT: It took a few weeks, but when I finally did hear back from the power utility, they had ZERO changes or questions about my proposal. They did remind me that I needed to have them stop out and test the “Anti-islanding” feature after the solar was installed, but before actually using it to produce energy. That test was very simple and all went well. You can see how much power I’m producing at: https://enlighten.enphaseenergy.com/pv/public_systems/PqBp1213167/overview

{ 6 comments… read them below or add one }

1 Tom Henry February 27, 2017 at 10:07 pm

Nice video on your solar garage project Ben. Great detail and info.
In July 2015 I had a 5KW solar PV system on ground mounts installed here in Nebraska.
Total cost before incentives was $14700.00. Prices have continued to fall since then! Only incentive in Nebraska is the federal 30% tax credit. I’ve saved over $1000.00 in electric bills already in spite of the $35.00 per month “minimum bill” with my local non profit utility. Yes, if I use zero KWH they still charge me $35.00 plus tax. Every utility handles net metering differently and can have a significant financial effect. Here in Nebraska they consider net metered solar as “unfairly subsidized” by normal rate payers and even say that in their newsletter to customers! How I’m subsidized is beyond my understanding! Sorry for the rant.
PV Watts has proven to be quite accurate so far for me.
My next step is a used electric vehicle for commuting 34 miles each way to work with workplace charging available.
What you do is inspiringly!
Thank you and Best Wishes,
Tom

2 Ben N. February 28, 2017 at 7:52 am

Thanks, Tom!
Glad to hear how that’s working out for you!

-Ben

3 Dick Anderson February 28, 2017 at 11:14 am

Nice Ben!
I did some serious checking into the requirements for solar PV when I was deciding to rebuild/repair my Enertech 1800 wind generator. Mind you this was a hook up to Alliant Energy lines but two things that were killer for me (I was lucky and because the generator was in place 10 years ago got grandfathered in). 1 – Since I assume you will be back feeding your PV power from a fuse panel in the garage into the house and onto the grid you may need a disconnect within 4 feet of your house meter. 2 – I was also told that the back feed amount of amperage may not exceed more than 20% of the rated capacity of the service panel. I have a 100A service entrance with a 60A sub panel in my shed that is over 100 feet from my house meter. So for me I would need to do some serious wiring up grading. I like your system and will be interested in watching your progress.

4 Ben N February 28, 2017 at 11:24 am

Hello Dick,
Yes, for my system, I will need an AC disconnect on the exterior of the garage. I will be “back-feeding” or making a “load-side connection” with the solar into the garage. That will come in through a 30A circuit, but the maximum theoretical current would be 22A. I’m using a 100A service panel in my garage (125A bus bars), so if solar was running full tilt theoretical maximum, that would be 18% rated capacity of the service panel.

At this point, I’m still waiting for feedback from the power company. Who knows, they may have some odd requirement for me, but it was all laid out fairly straight-forward in the paperwork I had to turn in. I did hear back from the Building Inspector. He put essentially NO limitations on me, other than requiring an electric permit SEPARATE from my garage wiring electric permit. I’m fine with that, although it does mean an extra fee involved too. Oh well, at least the permit fee will be considered part of the total cost of the solar system, so I can include that in the numbers for the Federal and Utility financial incentives!

5 distributor panel surya November 27, 2017 at 11:45 pm

Nice Ben!
I did some serious checking into the requirements for solar PV when I was deciding to rebuild/repair my Enertech 1800 wind generator. Mind you this was a hook up to Alliant Energy lines but two things that were killer for me (I was lucky and because the generator was in place 10 years ago got grandfathered in). 1 – Since I assume you will be back feeding your PV power from a fuse panel in the garage into the house and onto the grid you may need a disconnect within 4 feet of your house meter. 2 – I was also told that the back feed amount of amperage may not exceed more than 20% of the rated capacity of the service panel. I have a 100A service entrance with a 60A sub panel in my shed that is over 100 feet from my house meter.

6 Ben N November 28, 2017 at 8:56 am

Yes, you have the right idea. Your power utility can pretty much ask you to do whatever they want, and the EXACT requirements will vary by who your power utility is. Some utilities make you add a second meter, some don’t.
At my place, I have an AC disconnect on the outside of my garage. The garage breaker panel is literally right on the other side of the wall. It’s also in a direct line of sight of my meter, and there’s a placard on the meter stating that there’s a second source of power, and what that power source is.
Signage is another thing utilities can be picky about.

The breaker panel in my garage has a 100A main breaker, but looking on the inside of the door, the bus bar ampacity is 125A. I have 24 panels and theoretically the micro-inverter on each one can produce 225 watts for a theoretical maximum peak power of 5400 watts, or 22.5A at 240V. For 125A bus bars, that’s 18% of the capacity of the bus bars, so that meets code. The main panel in the house is 200A, so, in theory, I could have installed 40A of solar on the main building (although the roofline and orientation are all wrong for it!)

The main thing of course is to check the requirements of your utility and local building inspection before starting any work.

“Grandfathering” is also an interesting topic. The big power company in my area lets you do net metering up to the amount of power that you use, for any energy that you produce BEYOND that amount, they only credit you 4 cents/kWh instead of the 13 cents/kWh you have to pay them. A number of years back, it was one-for-one, you were credited the 13 cents for power you sent back to the grid no matter how much or how little power you used. I know someone who had a wind generator, which was installed during the era of the earlier pricing structure. Because he already had the contract with the power company (grandfathered) he added quite a bit of solar (12kW, I think!) and it was also included in the pricing structure that was more advantageous to him!

How the power utility “pays” you is also a very important aspect, and you definitely want to understand how their system works before installing solar.

I’m fortunate to have a local, non-profit electric company which fully credits me for every kWh produced. In the summer, I end up with a credit on the bill that can help reduce the bill in the winter. I’ve only had my solar up for 5 months now, and we are just going into winter, so I don’t know exactly how my solar credits vs power use will be. I may not completely get rid of the electric bill, but at worst it will simply be substantially reduced!

Leave a Comment

You can use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Previous post:

Next post: